1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
/* lib.rs
*
* Developed by Tim Walls <tim.walls@snowgoons.com>
* Copyright (c) All Rights Reserved, Tim Walls
*/
#![allow(clippy::needless_doctest_main)]
//! A simple Rust runtime for AVR microcontrollers.
//!
//! AVRoxide is a simple Hardware Abstraction Layer and runtime for
//! developing software for ATmega AVR microcontrollers.
//!
//! It was born out of frustration of the lack of options available for
//! Rust development using the ATmega4809 microcontroller present in
//! Arduino Nano Every embedded processor boards, but is intended to grow
//! to support multiple target devices.
//!
//! Key features include:
//! * Abstractions of the key hardware devices provided by the controller,
//! like USARTs, timers, and GPIO ports.
//! * Higher-level abstractions - like 'clock' and 'button' - for simple
//! application programming.
//! * An "Arduino Familiar" way of referring to hardware components,
//! while also offering complete access to the underlying chip for regular,
//! non-Arduino, embedded solutions.
//! * A simple runtime for event-based application development, using
//! interrupt-driven IO for power-efficient operation.
//! * Pre-emptive multithreading supervisor with basic synchronisation
//! primitives.
//!
//! # Rust Toolchain Compatibility
//! Building Rust for AVR requires `nightly`. Note that at present there
//! is [a bug](https://github.com/rust-lang/rust/pull/106619) in current
//! versions of Rust which causes an error linking AVR binaries; the latest
//! toolchain that you must use is therefore `nightly-2022-10-22`.
//!
//! # Feature Flags
//! Feature flags are used so you can ensure minimal code size by disabling
//! features that are not required, and also to configure some of those
//! features at compile-time (important in an embedded system.) Some of these
//! features are mandatory, and describe the type of hardware you are building
//! for. Others describe optional functionality.
//!
//! ## Mandatory Features
//! It is necessary to tell AVRoxide what device you are supporting by
//! providing both a processor feature, and a clockspeed feature, from the
//! list below. The CPU feature flag determines which hardware devices are
//! exposed by the HAL, while the clockspeed feature is used to calculate
//! certain constants for things like timer and baud rate calculations.
//!
//! | CPU Feature | Clockspeed features (pick 1) |
//! | ----------- | ---------------------------- |
//! | `atmega4809` | `16MHz`, `20MHz` |
//! | `atmega328p` | `16MHz` |
//!
//! ## Optional Features
//! ### Board Compatibility
//! Feature flags can be used to enable a board-compatibility module that
//! you can then use to access pins via "board-specific" aliases. For example,
//! if you enable on of the Arduino board features, you can access the
//! A and D pins using the Arduino naming conventions using aliases like so:
//!
//! ```rust,no_run
//! # #![no_std]
//! # #![no_main]
//! #
//! # use avr_oxide::alloc::boxed::Box;
//! # use avr_oxide::devices::UsesPin;
//! # use avr_oxide::devices::debouncer::Debouncer;
//! # use avr_oxide::devices::{ OxideLed, OxideButton, OxideSerialPort };
//! # use avr_oxide::hal::generic::serial::{BaudRate, DataBits, Parity, SerialPortMode, StopBits};
//! # use avr_oxide::io::Write;
//! # use avr_oxide::StaticWrap;
//! use avr_oxide::boards::board;
//!
//! #[avr_oxide::main(chip="atmega4809",stacksize=512)]
//! pub fn main() {
//! # let supervisor = avr_oxide::oxide::instance();
//! let green_led = OxideLed::with_pin(board::pin_d(7));
//! # supervisor.run()
//! }
//! ```
//!
//! The relevant feature flags are:
//!
//! | Feature name | |
//! | ------------ | ------- |
//! | `arduino_nanoevery` | Arduino Nano Every with ATmega4809 CPU |
//! | `arduino_uno` | Arduino Uno with ATmega328P CPU |
//! | `atmega4809_xplained_pro` | AVR ATMega4809-XPlained-Pro board |
//!
//! ### Panic handler
//! If the `panic_handler` feature is enabled, a default panic handler will
//! be provided.
//!
//! ### Panic to serial port support
//! You can configure a serial port which will be used by the AVRoxide
//! [panic handler] to output error line information on panic.
//!
//! It is your responsibility to initialise that port with a
//! suitable baud rate/serial protocol as early as possible in your program.
//!
//! | For Processor | Available panic output Features (pick 1) |
//! | -------------- | ---------------------------------------- |
//! | `atmega4809` | `panicout_usart0`, `panicout_usart1`, `panicout_usart2`, `panicout_usart3` |
//! | `atmega328p` | `panicout_usart0` |
//!
//! > *Important*: Because of the way Rust embeds panic information in your
//! > binary, enabling this feature can take up a fair amount of Flash memory
//! > space. For example, a simple test app that uses 37882 bytes of Flash
//! > without this feature uses 44330 bytes with it.
//! >
//! > Note also that because Rust embeds absolute pathnames for source files
//! > into the binary, the size of your binary can change depending on where
//! > (the directory path) you compile it on your development machine!
//!
//! Often, we need to disable Rust's built-in panic handling entirely in
//! `.cargo/config.toml`, like so:
//!
//! ```toml
//! build-std-features = ["compiler-builtins-mangled-names","panic_immediate_abort"]
//! ```
//!
//! In this case, there is still value to nominating a `panicout` port;
//! avr-oxide will still use this serial port to dump thread dumps, or
//! for use with the built-in serial debug methods in the [`avr_oxide::util::debug`] module.
//!
//! ### Dynamic Allocator
//! A dynamic allocator implementation is provided; this will allocate a
//! certain amount of the device's memory as a heap for dynamic data
//! allocation. The size of the heap will be automatically calculated after
//! taking into account space used by statics/global variables.
//!
//! A certain minimum amount of memory allocatable to heap is required by
//! AVRoxide. If this minimum amount of RAM is not available, the system
//! will halt on boot with an [`avr_oxide::oserror::OsError::NotEnoughRam`] error.
//!
//! The minimum heap size requirement is dependent on the processor:
//!
//! | For Processor | Minimum memory for heap |
//! | ------------- | ----------------------- |
//! | `atmega4809` | 2048 bytes |
//! | `atmega328p` | 512 bytes |
//!
//! #### Stack size
//! Note that the thread stack is allocated from the *heap* when a thread
//! is created (including your initial main thread.)
//!
//! #### Rust memory use with panics
//! The way Rust currently handles panics results in inordinate use of
//! not just EEPROM, but also RAM. You can help significantly by adding the
//! `panic_immediate_abort` feature to your `.cargo/config.toml`:
//!
//! ```toml
//! build-std-features = ["compiler-builtins-mangled-names","panic_immediate_abort"]
//! ```
//!
//! If your application will not run, with an `OsError::NotEnoughRam` error,
//! you may need to do this.
//!
//! ### Device Features
//! Some individual device 'drivers' are enabled by feature flags. If you
//! don't need one, don't enable it and maybe you can save a few precious
//! bytes of RAM...
//!
//! | For Processor | Optional Device Feature Flags |
//! | ------------- | ----------------------------- |
//! | `atmega4809` | `usart0`,`usart1`,`usart2`,`usart3`,`tcb0`,`tcb1`,`tcb2`,`tcb3`,`rtc`, `twi0` |
//! | `atmega328p` | `usart0` |
//!
//! ### Low-Power Modes
//! By default, Oxide configures the chip to run without a clock prescaler
//! (i.e. it runs at the full configured clockspeed), and a basic internal
//! clock interrupt frequency of 80Hz (this is the maximum frequency for
//! which you can configure `MasterClock` device events.)
//!
//! It is possible however to enable lower-power-use modes through either
//! the `power_med` or `power_low` feature flags; these have the following
//! effect:
//!
//! | Power mode flag | Processor clock speed | Oxide clock frequency |
//! | --------------- | --------------------- | --------------------- |
//! | None set | 1:1 (equal to hardware clock source) | 80 Hz |
//! | `power_med` | 1/4th (0.25) of hardware clock source | 40 Hz |
//! | `power_low` | 1/8th (0.125) of hardware clock source | 10 Hz |
//!
//! ### Pre-Emptive Multithreading
//! AVRoxide supports multithreading, with threads created/joined using a
//! simplified version of the standard Rust `thread::spawn()` and
//! `thread::yield_now()` methods (provided through the [`avr_oxide::thread`]
//! module.) Familiar synchronisation primitives are provided in [`avr_oxide::sync`].
//!
//! Cooperative threading (using `yield_now()` and/or syncorhonisation
//! primitives which yield when blocked as and when necessary) requires no
//! further configuration.
//!
//! Pre-emptive multithreading is supported as well, but does require one
//! further step - a timer that will drive thread preemption. This means
//! at least one MasterClock device must be created and running:
//!
//! ```rust,no_run
//! #![no_std]
//! #![no_main]
//!
//! use avr_oxide::devices::{ UsesPin, OxideLed, OxideMasterClock };
//! use avr_oxide::boards::board;
//! use avr_oxide::thread;
//! use avr_oxide::hardware;
//! use avr_oxide::StaticWrap;
//!
//! #[avr_oxide::main(chip="atmega4809",stacksize=512)]
//! pub fn main() {
//! let supervisor = avr_oxide::oxide::instance();
//!
//! // Configure a 50Hz master clock device on TCB0
//! let master_clock = StaticWrap::new(OxideMasterClock::with_timer::<50>(hardware::timer::tcb0::instance()));
//! supervisor.listen(master_clock.borrow());
//!
//! // The MasterCLock will by default drive context switches, thus threads
//! // will now be pre-emptively multitasked, and this code will work without
//! // locking up:
//! let _jh = thread::Builder::new().stack_size(32).spawn(||{
//! let white_led = OxideLed::with_pin(board::pin_d(10));
//!
//! loop {
//! white_led.toggle();
//! }
//! });
//!
//! // Note that all the usual functionality of the MasterClock device
//! // (delay timers, regular Oxide event handlers) remains available -
//! // it will be used for thread preemption *in addition* to its usual
//! // function, not instead.
//!
//! supervisor.run();
//! }
//! ```
//!
//! Note that by default all MasterClock devices trigger context switches.
//! You can disable this behaviour with the [`disable_preemption()`] method
//! on a device that you don't wish to trigger context switches.
//!
//! [`disable_preemption()`]: avr_oxide::devices::MasterClock::disable_preemption
//!
//! ### Runtime checks
//! The kernel performs various sanity checks during runtime, if enabled
//! with the `runtime_checks` feature. It is strongly encouraged that you
//! *do* use this feature, however it does imply a certain amount of
//! overhead (in particular during the context-switch interrupt routine, which
//! is when most of these are executed), so if you need to squeeze every last
//! ounce of performance out of the processor you may disable them.
//!
//! The table below summarises the checks performed:
//!
//! | Test | With `runtime_checks` | Without `runtime_checks` |
//! | ---- | --------------------- | ------------------------ |
//! | Thread stack overflow | Halt with [`OsError::StackOverflow`] | Undefined behaviour |
//! | Kernel structure consistency | Halt with [`OsError::KernelGuardCrashed`] | Undefined behaviour |
//! | Event queue overflow | Halt with [`OsError::OxideEventOverflow`] | Events silently discarded |
//! | Attempt to block inside an ISR | Halt with [`OsError::BadThreadState`] | Undefined behaviour |
//! | A StaticWrap dropped | Halt with [`OsError::StaticDropped`] | Memory leaked |
//!
//! [`OsError::StackOverflow`]: avr_oxide::oserror::OsError::StackOverflow
//! [`OsError::KernelGuardCrashed`]: avr_oxide::oserror::OsError::KernelGuardCrashed
//! [`OsError::OxideEventOverflow`]: avr_oxide::oserror::OsError::OxideEventOverflow
//! [`OsError::BadThreadState`]: avr_oxide::oserror::OsError::BadThreadState
//! [`OsError::StaticDropped`]: avr_oxide::oserror::OsError::StaticDropped
//!
//! # A Minimal AVRoxide Program
//! This program shows how to access the devices using the Arduino aliases
//! for an Arduino Nano Every, and how to listen to button events from a
//! button attached to pin A2 to toggle an LED attached to pin D7 every time
//! the button is pressed.
//!
//! We also show the use of a software debouncer on the pin, and configuring
//! a serial port.
//!
//! ```no_run
//! #![no_std]
//! #![no_main]
//!
//! use avr_oxide::alloc::boxed::Box;
//! use avr_oxide::devices::UsesPin;
//! use avr_oxide::devices::debouncer::Debouncer;
//! use avr_oxide::devices::{ OxideLed, OxideButton, OxideSerialPort };
//! use avr_oxide::hal::generic::serial::{BaudRate, DataBits, Parity, SerialPortMode, StopBits};
//! use avr_oxide::io::Write;
//! use avr_oxide::boards::board;
//! use avr_oxide::StaticWrap;
//!
//! #[avr_oxide::main(chip="atmega4809")]
//! pub fn main() {
//! let supervisor = avr_oxide::oxide::instance();
//!
//! // Configure the serial port early so we can get any panic!() messages
//! let mut serial= OxideSerialPort::using_port_and_pins(board::usb_serial(),
//! board::usb_serial_pins().0,
//! board::usb_serial_pins().1).mode(SerialPortMode::Asynch(BaudRate::Baud9600, DataBits::Bits8, Parity::None, StopBits::Bits1));
//! serial.write(b"Welcome to AVRoxide\n");
//!
//! let green_led = OxideLed::with_pin(board::pin_d(7));
//! let mut green_button = StaticWrap::new(OxideButton::using(Debouncer::with_pin(board::pin_a(2))));
//!
//! green_button.borrow().on_click(Box::new(move |_pinid, _state|{
//! green_led.toggle();
//! }));
//!
//! // Tell the supervisor which devices to listen to
//! supervisor.listen(green_button.borrow());
//!
//! // Now enter the event loop
//! supervisor.run();
//! }
//! ```
//!
//! # Examples and Templates
//! A more comprehensive example program can be found [here](https://avroxi.de/post/an-example-program/).
//!
//! 'Empty' templates can be found at the [AVRoxide Templates](https://gitlab.com/snowgoonspub/avr-oxide-templates) gitlab repo,
//! with all the necessary bits and pieces to get up and running quickly.
//!
//! The project homepage is at [avroxi.de](https://avroxi.de), where you'll find
//! more getting-started style guides and documentation.
//!
#![feature(abi_avr_interrupt)]
#![feature(naked_functions)]
#![feature(lang_items)]
#![feature(concat_idents)]
#![feature(const_maybe_uninit_assume_init)]
#![feature(maybe_uninit_uninit_array)]
#![feature(maybe_uninit_array_assume_init)]
#![feature(alloc_error_handler)]
#![feature(dropck_eyepatch)]
#![feature(trait_alias)]
#![feature(optimize_attribute)]
#![feature(asm_experimental_arch)]
#![feature(asm_const)]
#![feature(const_mut_refs)]
#![feature(negative_impls)]
#![feature(step_trait)]
#![feature(try_trait_v2)]
#![feature(try_trait_v2_residual)]
#![feature(const_trait_impl)]
#![feature(const_precise_live_drops)]
// no_std if built for AVR, if built for anything else it'll be for testing
// and then we do want std
#![cfg_attr(target_arch="avr", no_std)]
extern crate self as avr_oxide;
pub mod io;
pub mod devices;
pub mod hal;
pub mod concurrency;
pub mod event;
pub mod oxide;
pub mod deviceconsts;
pub mod util;
pub(crate) mod private;
mod mutstatic;
pub mod boards;
#[cfg(feature="bootable")]
mod boot;
pub mod alloc;
mod staticwrap;
pub use staticwrap::{StaticWrap,StaticRef,StaticRefMut,AsStaticRef,AsStaticRefMut};
pub mod time;
pub mod stdout;
pub mod oserror;
pub use oserror::OxideResult;
pub use oxide_macros::main as main;
// For convenience let's re-export the AVR device as a generic name
#[cfg(feature="atmega4809")]
pub use avr_oxide::hal::atmega4809 as hardware;
#[cfg(feature="atmega328p")]
pub use avr_oxide::hal::atmega328p as hardware;
// Re-export a few well buried modules at the top level
pub use avr_oxide::concurrency::sync as sync;
pub use avr_oxide::concurrency::thread as thread;