1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
/* wallclock.rs
*
* Developed by Tim Walls <tim.walls@snowgoons.com>
* Copyright (c) All Rights Reserved, Tim Walls
*/
//! A simple RTC device designed to keep wall-clock time. It generates
//! events at a fixed frequency of 1Hz, using the reliable RTC clock
//! generator rather than the MasterClock device's generic Timers.
//!
//! # Usage
//! Create the WallClock device using the [`with_timer()`] method, ensuring you
//! pass in an AVR RTC device, rather than a generic timer.
//!
//! The frequency of events is hard-coded at 1Hz (i.e. one per second) -
//! the WallClock is intended to maintain clock time, not for precise or
//! high-frequency measurements.
//!
//! ```rust,no_run
//! # #![no_std]
//! # #![no_main]
//! # use avr_oxide::alloc::boxed::Box;
//! # use avr_oxide::boards;
//! # use avr_oxide::devices::OxideWallClock;
//! # use avr_oxide::devices::masterclock::TickEvents;
//! # use avr_oxide::StaticWrap;
//! #
//! # #[avr_oxide::main(chip="atmega4809")]
//! # pub fn main() -> ! {
//! # let supervisor = avr_oxide::oxide::instance();
//!
//! let wall_clock = StaticWrap::new(OxideWallClock::with_timer(avr_oxide::hardware::timer::rtc::instance()));
//!
//! // An event handler every time the master clock ticks
//! wall_clock.borrow().on_tick(Box::new(move |_timerid, _duration|{
//! // Do something once a second
//! }));
//!
//! supervisor.listen(wall_clock.borrow());
//! supervisor.run();
//! # }
//! ```
//!
//! In addition to generating tick events, the WallClock also maintains a
//! counter of the time elapsed since the clock was first started. You can
//! access via the [`runtime()`] method.
//!
//! ## Counter Overflow
//! The [`avr_oxide::time::Duration`] type stores duration in seconds as a u32,
//! thus the maximum possible duration is (2^32)-1 seconds, or just over
//! 136 years.
//!
//! Thus while it is *quite* unlikely that an AVRoxide application will be
//! running for over a century it is not entirely impossible - the internal
//! counter may thus overflow in 136 years' time. In the event that this
//! happens, the counter will wrap around to 1, and a flag will be set
//! indicating that the counter has overflowed ([`runtime_overflowed()`] method
//! to access.) The application developer may thus detect this occurence
//! and choose to handle it in application specific ways.
//!
//! The `runtime_overflowed` flag may be cleared using the [`clear_runtime_overflow()`]
//! method, in which case it will be set again in another 136 years.
//!
//! # Delay Events
//! The WallClock device can be used to efficiently schedule events which
//! should be triggered in the future. A closure can be passed to the
//! [`after_delay()`] method, which will be executed after the given duration
//! has elapsed. Internally, WallClock uses a Delay Queue implementation,
//! meaning there is no limit to the number of such events which may be
//! scheduled (other than memory to allocate the queue elements.)
//!
//! ```rust,no_run
//! # #![no_std]
//! # #![no_main]
//! # use avr_oxide::alloc::boxed::Box;
//! # use avr_oxide::boards;
//! # use avr_oxide::devices::OxideWallClock;
//! # use avr_oxide::devices::masterclock::DelayEvents;
//! # use avr_oxide::time::Duration;
//! # use avr_oxide::StaticWrap;
//! #
//! # #[avr_oxide::main(chip="atmega4809")]
//! # pub fn main() -> ! {
//! # let supervisor = avr_oxide::oxide::instance();
//!
//! let wall_clock = StaticWrap::new(OxideWallClock::with_timer(avr_oxide::hardware::timer::rtc::instance()));
//!
//! wall_clock.borrow().after_delay(Duration::from_secs(60), Box::new(move |_timerid|{
//! // Do something after a minute
//! }));
//! wall_clock.borrow().after_delay(Duration::from_secs(3600), Box::new(move |_timerid|{
//! // Do something in an hour
//! }));
//!
//! supervisor.listen(wall_clock.borrow());
//! supervisor.run();
//! # }
//! ```
//!
//! # Blocking API
//! A blocking [`wait()`] API is also provided, which will block the calling
//! thread for the given duration. Note that the clock must be running -
//! i.e. the [`supervisor.listen_handle()`] method was called already - *before*
//! you use the [`wait()`] method, or you can expect to block forever, and that
//! this method depends on the main supervisor to be running. In other words,
//! this must be used in threads you have [`spawn()`]ed, not the main thread.
//!
//! ```rust,no_run
//! # #![no_std]
//! # #![no_main]
//! # use avr_oxide::alloc::boxed::Box;
//! # use avr_oxide::devices::OxideWallClock;
//! # use avr_oxide::devices::masterclock::DelayEvents;
//! # use avr_oxide::time::Duration;
//! # use avr_oxide::StaticWrap;
//! #
//! # #[avr_oxide::main(chip="atmega4809")]
//! # pub fn main() -> ! {
//! # let supervisor = avr_oxide::oxide::instance();
//!
//! let master_clock = StaticWrap::new(OxideWallClock::with_timer(avr_oxide::hardware::timer::rtc::instance()));
//! supervisor.listen(master_clock.borrow());
//!
//! {
//! let master_clock = master_clock.borrow();
//! avr_oxide::thread::spawn(move||{
//! master_clock.wait(Duration::from_millis(3000));
//! 0
//! });
//! }
//!
//! supervisor.run();
//! # }
//! ```
//!
//! [`wait()`]: WallClock::wait
//! [`with_timer()`]: WallClock::with_timer
//! [`after_delay()`]: WallClock::after_delay
//! [`runtime()`]: WallClock::runtime
//! [`runtime_overflowed()`]: WallClock::runtime_overflowed
//! [`clear_runtime_overflow()`]: WallClock::clear_runtime_overflow
//! [`supervisor.listen_handle()`]: avr_oxide::oxide::OxideSupervisor::listen_handle
//! [`spawn()`]: avr_oxide::concurrency::thread::spawn
// Imports ===================================================================
use core::marker::PhantomData;
use core::cell::RefCell;
use core::ops::DerefMut;
use avr_oxide::alloc::boxed::Box;
use avr_oxide::concurrency::interrupt;
use avr_oxide::devices::masterclock::{DelayCallback, DelayEvents, DelayResponder};
use avr_oxide::event::{EventSink, EventSource, OxideEvent, OxideEventEnvelope};
use avr_oxide::hal::generic::timer::{RtcCalibration, RtcPrescaler, RtcSource, RtcTimerCalibration, TimerControl, TimerIsrCallback};
use avr_oxide::hal::generic::timer::TimerMode::Periodic;
use avr_oxide::{panic_if_none, thread};
use avr_oxide::private::delayq::{DelayQueue, SimpleDelayQueue};
use avr_oxide::sync::EventWait;
use avr_oxide::util::OwnOrBorrowMut;
use avr_oxide::time::Duration;
use super::masterclock::TickCallback;
use super::masterclock::TickEvents;
// Declarations ==============================================================
pub struct WallClock<'wc,T,S>
where
T: 'static + TimerControl + RtcTimerCalibration,
S: EventSink
{
timer: OwnOrBorrowMut<'static,T>,
phantom: PhantomData<S>,
running_time: Duration,
running_time_overflow: bool,
delay_events: RefCell<SimpleDelayQueue<Duration,DelayResponder<'wc>>>,
on_tick: RefCell<Option<Box<dyn TickCallback + 'wc>>>
}
// Code ======================================================================
impl<T,S> WallClock<'_,T,S>
where
T: 'static + TimerControl + RtcTimerCalibration,
S: EventSink
{
/**
* Create an instance that will use the given RTC timer device for timing.
*/
pub fn using<OT: Into<OwnOrBorrowMut<'static,T>>>(timer: OT) -> Self {
let mut timer : OwnOrBorrowMut<T> = timer.into();
// Set up clock to use:
// 1.024 KHz internal clock
// No calibration offset
// Prescaler value of 4
timer.set_clock_calibration(RtcSource::Int1k,
RtcCalibration::Fast(0),
RtcPrescaler::Div4);
timer.set_mode(Periodic);
timer.set_interrupt_period(1024);
// Note that the prescaler value has no effect on PIT interrupts,
// so we need a period of 1024 on periodic timer interrupts to generate
// one interrupt per second.
Self {
timer,
running_time: Duration::ZERO,
running_time_overflow: false,
phantom: PhantomData::default(),
on_tick: RefCell::new(None),
delay_events: RefCell::new(SimpleDelayQueue::new())
}
}
/**
* Return a static reference to an instance that will use the given RTC
* device for timing.
*/
pub fn static_using<OT: Into<OwnOrBorrowMut<'static,T>>>(timer: OT) -> &'static mut Self {
let alloc = Box::new(Self::using(timer));
Box::leak(alloc)
}
pub fn with_timer(timer: &'static mut T) -> Self {
Self::using(timer)
}
pub fn static_with_timer(timer: &'static mut T) -> &'static mut Self {
Self::static_using(timer)
}
/// Return the total duration for which the clock has been running
pub fn runtime(&self) -> Duration {
avr_oxide::concurrency::interrupt::isolated(|_|{
self.running_time
})
}
/// Return true iff the runtime counter has overflowed
pub fn runtime_overflowed(&self) -> bool {
avr_oxide::concurrency::interrupt::isolated(|_|{
self.running_time_overflow
})
}
/// Clear the flag indicating that the runtime counter overflowed (until
/// the next time...)
pub fn clear_runtime_overflow(&mut self) {
avr_oxide::concurrency::interrupt::isolated(|_|{
self.running_time_overflow = false
})
}
/// Increment the running time by the given number of seconds; if the
/// counter overflows, we will set a flag so the recipient can know that
/// but then we just keep on trucking.
fn increment_running_time(&mut self, _isotoken: avr_oxide::concurrency::Isolated, secs: u16) {
match self.running_time.checked_add(Duration::from_secs(secs as u32)) {
None => { // The addition would overflow
self.running_time_overflow = true;
self.running_time = Duration::from_secs(secs as u32);
},
Some(new_running_time) => {
self.running_time = new_running_time;
}
}
}
/// Block the calling thread for (at least) the given duration.
///
/// # Important
/// Note that the clock must be running -
/// i.e. the [`supervisor.listen_handle()`] method was called already - *before*
/// you use the `wait()` method, or you can expect to block forever, , and that
/// this method depends on the main supervisor to be running. In other words,
/// this must be used in threads you have [`spawn()`]ed, not the main thread.
///
/// [`supervisor.listen_handle()`]: avr_oxide::oxide::OxideSupervisor::listen_handle
/// [`spawn()`]: avr_oxide::concurrency::thread::spawn
pub fn wait(&self, delay: Duration){
interrupt::isolated(|isotoken|{
let mut waiter = EventWait::new();
waiter.add_to_waitlist(isotoken);
self.delay_events.borrow_mut().insert_at(delay.saturating_add(Duration::MILLISECOND),
DelayResponder::WaitingThread(waiter));
});
thread::yield_now();
}
}
impl<'wc, T, S> TickEvents<'wc> for WallClock<'wc, T, S>
where
T: 'static + TimerControl + RtcTimerCalibration,
S: EventSink
{
fn on_tick(&self, bf: Box<dyn TickCallback + 'wc>) {
self.on_tick.replace(Some(bf));
}
}
impl<'wc,T,S> DelayEvents<'wc> for WallClock<'wc,T,S>
where
T: 'static + TimerControl + RtcTimerCalibration,
S: EventSink
{
type DelayHandle = avr_oxide::private::delayq::DelayQueueHandle;
fn after_delay(&self, delay: Duration, bf: Box<dyn DelayCallback + 'wc>) -> Self::DelayHandle {
self.delay_events.borrow_mut().insert_at(delay.saturating_add(Duration::MILLISECOND), DelayResponder::HandlerCallback(bf))
}
fn cancel_delay(&self, handle: Self::DelayHandle) -> bool {
self.delay_events.borrow_mut().remove(handle)
}
}
impl<T,S> EventSource for WallClock<'_,T,S>
where
T: 'static + TimerControl + RtcTimerCalibration,
S: EventSink
{
fn listen(&'static self) {
self.timer.start(TimerIsrCallback::WithData(|isotoken, source, ticks, udata| {
unsafe {
let clock = &mut *(panic_if_none!(udata, avr_oxide::oserror::OsError::InternalError) as *mut WallClock<T,S>);
clock.increment_running_time(isotoken, ticks);
}
S::event(isotoken, OxideEventEnvelope::to(unsafe { &*(panic_if_none!(udata, avr_oxide::oserror::OsError::InternalError) as *const WallClock<T,S> as *const dyn EventSource) },
OxideEvent::ClockTick(source,ticks)));
true
}, self as *const dyn core::any::Any ));
}
/// Process the clock events (in userland). This means calling any explicit
/// on-event handlers, but we also do the processing of any delay queue
/// events entirely in userland.
fn process_event(&self, evt: OxideEvent) {
match (self.on_tick.borrow_mut().deref_mut(), evt) {
(Some(f), OxideEvent::ClockTick(source, ticks)) => {
let time_passed = Duration::from_secs(ticks as u32);
// See if any delay-queue event handlers are released
self.delay_events.borrow_mut().decrement(time_passed);
while let Some(mut handler) = self.delay_events.borrow_mut().consume_next_ready() {
match &mut handler {
DelayResponder::WaitingThread(eventwait) => {
eventwait.release_all()
},
DelayResponder::HandlerCallback(handler) => {
(*handler)(source)
}
}
}
// Call any tick event handler
(*f)(source,time_passed)
},
_ => {}
}
}
}
unsafe impl<T,S> Send for WallClock<'_,T,S>
where
T: 'static + TimerControl + RtcTimerCalibration,
S: EventSink
{}
unsafe impl<T,S> Sync for WallClock<'_,T,S>
where
T: 'static + TimerControl + RtcTimerCalibration,
S: EventSink
{}
// Tests =====================================================================