1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
/* masterclock.rs
*
* Developed by Tim Walls <tim.walls@snowgoons.com>
* Copyright (c) All Rights Reserved, Tim Walls
*/
//! A simple master clock device designed to produce regular, frequent clock
//! tick events.
//!
//! # Usage
//! The frequency, in Hz, is passed as a constant parameter when the
//! device is constructed using the [`using()`] constructor methods. Also
//! passed is the underlying AVR hardware timer device which it should use
//! to generate the clock.
//!
//! ```rust,no_run
//! # #![no_std]
//! # #![no_main]
//! # use avr_oxide::alloc::boxed::Box;
//! # use avr_oxide::boards;
//! # use avr_oxide::devices::{ OxideMasterClock };
//! # use avr_oxide::devices::masterclock::TickEvents;
//! # use avr_oxide::StaticWrap;
//! #
//! # #[avr_oxide::main(chip="atmega4809")]
//! # pub fn main() -> ! {
//! # let supervisor = avr_oxide::oxide::instance();
//!
//! let master_clock = StaticWrap::new(OxideMasterClock::with_timer::<20>(avr_oxide::hardware::timer::tcb0::instance()));
//!
//! // An event handler every time the master clock ticks
//! master_clock.borrow().on_tick(Box::new(move |_timerid, _duration|{
//! // Do something 20 times every second
//! }));
//!
//! supervisor.listen(master_clock.borrow());
//! supervisor.run();
//! # }
//! ```
//!
//! # Delay Events
//! The MasterClock device can be used to efficiently schedule events which
//! should be triggered in the future. A closure can be passed to the
//! [`after_delay()`] method, which will be executed after the given duration
//! has elapsed. Internally, WallClock uses a Delay Queue implementation,
//! meaning there is no limit to the number of such events which may be
//! scheduled (other than memory to allocate the queue elements.)
//!
//! ```rust,no_run
//! # #![no_std]
//! # #![no_main]
//! # use avr_oxide::alloc::boxed::Box;
//! # use avr_oxide::devices::OxideMasterClock;
//! # use avr_oxide::devices::masterclock::DelayEvents;
//! # use avr_oxide::time::Duration;
//! # use avr_oxide::StaticWrap;
//! #
//! # #[avr_oxide::main(chip="atmega4809")]
//! # pub fn main() -> ! {
//! # let supervisor = avr_oxide::oxide::instance();
//!
//! let master_clock = StaticWrap::new(OxideMasterClock::with_timer::<20>(avr_oxide::hardware::timer::tcb0::instance()));
//!
//! master_clock.borrow().after_delay(Duration::from_millis(100), Box::new(move |_timerid|{
//! // Do something after 100ms
//! }));
//!
//! supervisor.listen(master_clock.borrow());
//! supervisor.run();
//! # }
//! ```
//!
//! # Blocking API
//! A blocking [`wait()`] API is also provided, which will block the calling
//! thread for the given duration. Note that the clock must be running -
//! i.e. the [`supervisor.listen_handle()`] method was called already - *before*
//! you use the [`wait()`] method, or you can expect to block forever, and that
//! this method depends on the main supervisor to be running. In other words,
//! this must be used in threads you have [`spawn()`]ed, not the main thread.
//!
//! ```rust,no_run
//! # #![no_std]
//! # #![no_main]
//! # use avr_oxide::alloc::boxed::Box;
//! # use avr_oxide::devices::OxideMasterClock;
//! # use avr_oxide::devices::masterclock::DelayEvents;
//! # use avr_oxide::time::Duration;
//! # use avr_oxide::StaticWrap;
//! #
//! # #[avr_oxide::main(chip="atmega4809")]
//! # pub fn main() -> ! {
//! # let supervisor = avr_oxide::oxide::instance();
//!
//! let master_clock = StaticWrap::new(OxideMasterClock::with_timer::<20>(avr_oxide::hardware::timer::tcb0::instance()));
//!
//! {
//! let master_clock = master_clock.borrow();
//! avr_oxide::thread::spawn(move||{
//! master_clock.wait(Duration::from_millis(2500));
//! 0
//! });
//! }
//!
//! supervisor.listen(master_clock.borrow());
//! supervisor.run();
//! # }
//! ```
//!
//! # Pre-Emptive Multithreading
//! A `MasterClock` instance is required to schedule thread context switches
//! pre-emptively. By default, any MasterClock instance will trigger
//! context switches at its configured frequency. This can be disabled
//! with the [`disable_preemption()`] method if not desired.
//!
//! # Features
//! For accurate frequency calculations, this depends on various constants
//! defined in the [`avr_oxide::deviceconsts::clock`] module. These depend
//! on the correct AVRoxide clockspeed feature being enabled in your `Cargo.toml`.
//!
//! | CPU Feature | Clockspeed features (pick 1) |
//! | ----------- | ---------------------------- |
//! | `atmega4809` | `16MHz`, `20MHz` |
//! | `atmega328p` | `16MHz` |
//!
//! # Maximum Frequency
//! The maximum frequency for which you can create a MasterClock is
//! limited by the maximum frequency of the Oxide internal tick. This is
//! determined by the CPU frequency and the power-saving feature you have
//! built AVRoxide with, as follows:
//!
//! | Frequency | Power-saving feature | Maximum MasterClock frequency |
//! | --------- | -------------------- | ----------------------------- |
//! | `16MHz` | None | 1000 Hz |
//! | | `power_med` | 500 Hz |
//! | | `power_low` | 500 Hz |
//! | `20MHz` | None | 1000 Hz |
//! | | `power_med` | 500 Hz |
//! | | `power_low` | 500 Hz |
//!
//! [`wait()`]: MasterClock::wait
//! [`using()`]: MasterClock::using
//! [`disable_preemption()`]: MasterClock::disable_preemption
//! [`after_delay()`]: MasterClock::after_delay
//! [`supervisor.listen_handle()`]: avr_oxide::oxide::OxideSupervisor::listen_handle
//! [`spawn()`]: avr_oxide::concurrency::thread::spawn
// Imports ===================================================================
use avr_oxide::hal::generic::timer::{TimerControl, TimerIdentity, TimerIsrCallback};
use avr_oxide::hal::generic::timer::TimerMode::Periodic;
use avr_oxide::event::{EventSink, EventSource, OxideEvent, OxideEventEnvelope};
use avr_oxide::deviceconsts::clock::{ MASTER_CLOCK_PRESCALER, MASTER_CLOCK_HZ, MASTER_TICK_FREQ_HZ };
use core::marker::PhantomData;
use core::ops::DerefMut;
use core::cell::RefCell;
use avr_oxide::alloc::boxed::Box;
use avr_oxide::concurrency::interrupt;
use avr_oxide::{panic_if_none, thread};
use avr_oxide::private::delayq::{DelayQueue, SimpleDelayQueue};
use avr_oxide::sync::EventWait;
use avr_oxide::util::OwnOrBorrowMut;
use avr_oxide::time::Duration;
// Declarations ==============================================================
pub trait TickCallback = FnMut(TimerIdentity,Duration) -> ();
pub trait DelayCallback = FnMut(TimerIdentity) -> ();
pub struct MasterClock<'mc,T,S>
where
T: 'static + TimerControl,
S: EventSink
{
freq_hz: u16,
timer: OwnOrBorrowMut<'static,T>,
phantom: PhantomData<S>,
context_switch: bool,
delay_events: RefCell<SimpleDelayQueue<Duration,DelayResponder<'mc>>>,
on_tick: RefCell<Option<Box<dyn TickCallback + 'mc>>>
}
/**
* Trait implemented by devices which can run code every time the clock ticks.
*/
pub trait TickEvents<'c> {
/**
* Call the given closure every time the clock ticks.
*/
fn on_tick(&self, bf: Box<dyn TickCallback + 'c>);
}
/**
* Trait implemented by devices which can run code after a delay has passed.
*/
pub trait DelayEvents<'c> {
type DelayHandle;
/**
* Call the given callback after /at least/ `delay` time has passed.
*/
fn after_delay(&self, delay: Duration, bf: Box<dyn DelayCallback + 'c>) -> Self::DelayHandle;
/**
* Cancel a given delay event, if possible. Returns `true` if the event
* was cancelled, or `false` if not (because it either never existed,
* or it has already been executed.)
*/
fn cancel_delay(&self, handle: Self::DelayHandle) -> bool;
}
pub(crate) enum DelayResponder<'mc> {
WaitingThread(EventWait),
HandlerCallback(Box<dyn DelayCallback + 'mc>)
}
// Code ======================================================================
impl<T, S> MasterClock<'_, T, S>
where
T: 'static + TimerControl,
S: EventSink
{
/**
* Create a MasterClock that uses the given AVR TimerControl device
* to schedule clock events. The desired frequency in Hz is provided
* as a static parameter. The timer will generate timer events to be
* consumed by the supervisor, which you can handle with the `on_event`
* method.
*/
pub fn using<OT: Into<OwnOrBorrowMut<'static,T>>, const FREQ_HZ: u16>(timer: OT) -> Self {
const CYCLES_PER_TICK: u16 = (MASTER_CLOCK_HZ as u32/(2u32 * MASTER_CLOCK_PRESCALER as u32 * MASTER_TICK_FREQ_HZ as u32)) as u16; // We use CLK_PER/2 in timer config, hence the 2* term
if FREQ_HZ > MASTER_TICK_FREQ_HZ {
avr_oxide::oserror::halt(avr_oxide::oserror::OsError::BadParams);
}
let mut timer : OwnOrBorrowMut<T> = timer.into();
timer.set_mode(Periodic);
timer.set_count_max(CYCLES_PER_TICK);
timer.set_interrupt_period((MASTER_TICK_FREQ_HZ/FREQ_HZ) as u16);
Self {
timer,
freq_hz: FREQ_HZ,
phantom: PhantomData::default(),
on_tick: RefCell::new(None),
context_switch: true,
delay_events: RefCell::new(SimpleDelayQueue::new())
}
}
pub fn static_using<OT: Into<OwnOrBorrowMut<'static,T>>, const FREQ_HZ: u16>(timer: OT) -> &'static mut Self {
Box::leak(Box::new(Self::using::<_,FREQ_HZ>(timer)))
}
pub fn with_timer<const FREQ_HZ: u16>(timer: &'static mut T) -> Self {
Self::using::<_, FREQ_HZ>(timer)
}
pub fn static_with_timer<const FREQ_HZ: u16>(timer: &'static mut T) -> &'static mut Self {
Box::leak(Box::new(Self::with_timer::<FREQ_HZ>(timer)))
}
/// Configure this MasterClock to drive the pre-emptive scheduling of
/// threads (i.e. this clock will context switch each time it ticks.)
pub fn enable_preemption(&mut self) {
interrupt::isolated(|_isotoken|{
self.context_switch = true;
});
}
/// Disable the preemption of threads using this clock.
pub fn disable_preemption(&mut self) {
interrupt::isolated(|_isotoken|{
self.context_switch = false;
});
}
/// Block the calling thread for (at least) the given duration.
///
/// # Important
/// Note that the clock must be running -
/// i.e. the [`supervisor.listen_handle()`] method was called already - *before*
/// you use the `wait()` method, or you can expect to block forever, , and that
/// this method depends on the main supervisor to be running. In other words,
/// this must be used in threads you have [`spawn()`]ed, not the main thread.
///
/// [`supervisor.listen_handle()`]: avr_oxide::oxide::OxideSupervisor::listen_handle
/// [`spawn()`]: avr_oxide::concurrency::thread::spawn
pub fn wait(&self, delay: Duration){
interrupt::isolated(|isotoken|{
let mut waiter = EventWait::new();
waiter.add_to_waitlist(isotoken);
self.delay_events.borrow_mut().insert_at(delay.saturating_add(Duration::MILLISECOND),
DelayResponder::WaitingThread(waiter));
});
thread::yield_now();
}
}
impl<'mc, T, S> TickEvents<'mc> for MasterClock<'mc, T, S>
where
T: 'static + TimerControl,
S: EventSink
{
fn on_tick(&self, bf: Box<dyn TickCallback + 'mc>) {
self.on_tick.replace(Some(bf));
}
}
impl<'mc,T,S> DelayEvents<'mc> for MasterClock<'mc,T,S>
where
T: 'static + TimerControl,
S: EventSink
{
type DelayHandle = avr_oxide::private::delayq::DelayQueueHandle;
fn after_delay(&self, delay: Duration, bf: Box<dyn DelayCallback + 'mc>) -> Self::DelayHandle {
self.delay_events.borrow_mut().insert_at(delay.saturating_add(Duration::MILLISECOND), DelayResponder::HandlerCallback(bf))
}
fn cancel_delay(&self, handle: Self::DelayHandle) -> bool {
self.delay_events.borrow_mut().remove(handle)
}
}
impl<T,S> EventSource for MasterClock<'_,T,S>
where
T: 'static + TimerControl,
S: EventSink
{
fn listen(&'static self) {
self.timer.start(TimerIsrCallback::WithData(|isotoken, source, _ticks, udata| {
// This is the callback on each tick (runs within interrupt context)
// First we inject an inevent into the event queue
S::event(isotoken, OxideEventEnvelope::to(unsafe { &*(panic_if_none!(udata, avr_oxide::oserror::OsError::InternalError) as *const MasterClock<T,S> as *const dyn EventSource) },
OxideEvent::ClockTick(source, 1)));
// Then if requested, we can also trigger a context switch
unsafe {
let myself = &*(panic_if_none!(udata, avr_oxide::oserror::OsError::InternalError) as *const MasterClock<T,S>);
if myself.context_switch {
interrupt::preemptive_reschedule(isotoken);
}
}
true
}, self as *const dyn core::any::Any ));
}
fn process_event(&self, evt: OxideEvent) {
match (self.on_tick.borrow_mut().deref_mut(), evt) {
(Some(f), OxideEvent::ClockTick(source, ticks)) => {
let time_passed = Duration::from_millis((1000u32 / self.freq_hz as u32) * ticks as u32);
// See if any delay-queue event handlers are released
self.delay_events.borrow_mut().decrement(time_passed);
while let Some(mut handler) = self.delay_events.borrow_mut().consume_next_ready() {
match &mut handler {
DelayResponder::WaitingThread(eventwait) => {
eventwait.release_all()
},
DelayResponder::HandlerCallback(handler) => {
(*handler)(source)
}
}
}
(*f)(source,time_passed);
},
_ => {}
}
}
}
unsafe impl<T,S> Send for MasterClock<'_,T,S>
where
T: 'static + TimerControl,
S: EventSink
{}
unsafe impl<T,S> Sync for MasterClock<'_,T,S>
where
T: 'static + TimerControl,
S: EventSink
{}
// Tests =====================================================================