1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
/* thread.rs
*
* Developed by Tim Walls <tim.walls@snowgoons.com>
* Copyright (c) All Rights Reserved, Tim Walls
*/
//! Multithreading primitives.
//!
//! AVRoxide allows you to create multiple threads, which will be scheduled
//! cooperatively (through the [`yield_now()`] method, or by calling any
//! blocking I/O routine), or pre-emptively if a suitable interrupt source is
//! nominated for pre-emption via a crate feature flag.
//!
//! # Limitations
//! There is a limit to the number of threads you can create, and additionally
//! since each thread gets a stack allocated from the heap, the available
//! heap memory is a limit.
//!
//! The initial (main()) thread is allocated a relatively large default stack
//! size, in recognition that it may be the only thread in the program and that
//! it is also likely to allocate a lot of 'global' data on its own stack.
//! This stack size can be changed by passing the `stacksize` attribute to
//! the `avr_oxide::main` macro.
//!
//! Subsequent threads are given a smaller default stack size, although this
//! can be overridden using the [`Builder::stack_size()`] method to create
//! the thread.
//!
//! The following table summarises the default thread limits:
//!
//! | For processor | Max threads | default main() stack | default new thread stack |
//! | ------------- | ----------- | ------------------ | ------------------------------ |
//! | `atmega4809` | 3 | 512 bytes | 128 bytes |
//! | `atmega328p` | 3 | 384 bytes | 64 bytes |
//!
//! > Note: The maximum number of threads in the table *includes* the `main()`
//! > thread, but not the default `Idle` thread that is created by the
//! > kernel and must always exist.
//!
//! # Thread completion and cleanup
//! When a thread completes, it will enter a *Zombie* state. It will remain
//! in this state - and the thread context and stack will not be cleaned up,
//! releasing any associated memory - until another thread joins it using
//! the [`JoinHandle::join()`] method.
//!
//! # Pre-Emptive Multithreading
//! Thread pre-emption depends on one (or more) interrupt sources being
//! nominated to drive the scheduler. This is done by enabling a
//! `pmt_<interrupt_name>` feature when including the AVRoxide crate in your
//! `cargo.toml`.
//!
//! Typically, you would nominate a timer interrupt; which interrupt will
//! depend on the device:
//!
//! | For processor | Typical Feature flag | Effect |
//! | ------------- | -----------------------| ------ |
//! | `atmega4809` | `pmt_tcb0_int` | Threads will be rescheduled every time TimerControlBlock 0 generates an interrupt |
//!
//! # Example
//! ```rust,no_run
//! #![no_std]
//! #![no_main]
//!
//! use avr_oxide::devices::{ UsesPin, OxideLed, OxideMasterClock };
//! use avr_oxide::thread;
//! use avr_oxide::hardware;
//! use avr_oxide::boards::board;
//! use avr_oxide::StaticWrap;
//!
//! #[avr_oxide::main(chip="atmega4809",stacksize=1024)]
//! pub fn main() {
//! let supervisor = avr_oxide::oxide::instance();
//!
//! // Configure a 50Hz master clock device on TCB0
//! let master_clock = StaticWrap::new(OxideMasterClock::with_timer::<50>(hardware::timer::tcb0::instance()));
//! supervisor.listen(master_clock.borrow());
//!
//! // If our code builds AVRoxide using the `pmt_tcb0_int` feature, threads
//! // will now be pre-emptively multitasked, and this code will work without
//! // locking up:
//! let _jh = thread::Builder::new().stack_size(32).spawn(||{
//! let white_led = OxideLed::with_pin(board::pin_d(10));
//!
//! loop {
//! white_led.toggle();
//! }
//! });
//!
//! // Note that all the usual functionality of the MasterClock device
//! // (delay timers, regular Oxide event handlers) remains available -
//! // it will be used for thread preemption *in addition* to its usual
//! // function, not instead.
//!
//! supervisor.run();
//! }
//! ```
// Imports ===================================================================
use avr_oxide::alloc::boxed::Box;
use avr_oxide::concurrency::scheduler::{ThreadContext, ThreadState};
use avr_oxide::concurrency::stack::{ThreadStack, DynamicThreadStack};
use avr_oxide::concurrency::util::{ThreadId, ThreadSet};
use avr_oxide::concurrency::{interrupt, scheduler};
use avr_oxide::cpu;
use avr_oxide::deviceconsts::oxide::{DEFAULT_THREAD_STACK_SIZE};
use avr_oxide::hal::generic::cpu::ProcessorContext;
use avr_oxide::util::datatypes::{BitField, BitIndex};
use avr_oxide::hal::generic::cpu::Cpu;
// Declarations ==============================================================
/**
* Handle that allows us to join a thread
*/
pub struct JoinHandle {
thread: Thread
}
/**
* The 'userland facing' representation of a Thread
*/
#[repr(C)]
#[derive(Clone,Copy)]
pub struct Thread {
thread_id: ThreadId
}
/**
* A thread factory that allows us to set the stack size for the thread that
* we create.
*/
pub struct Builder {
stack_size: usize
}
// Code ======================================================================
/**
* Spawn a new thread, returning a JoinHandle for it. Panics if the thread
* cannot be spawned.
*/
pub fn spawn<F>(f: F) -> JoinHandle
where
F: FnOnce() -> u8,
F: Send + 'static
{
Builder::new().spawn(f)
}
/**
* Cooperatively have the current thread yield to another.
*/
pub fn yield_now() {
unsafe {
if cpu!().interrupts_enabled() && !cpu!().in_isr() {
scheduler::userland_schedule_and_switch();
} else {
avr_oxide::oserror::halt(avr_oxide::oserror::OsError::CannotYield)
}
}
}
/**
* Spawn a new thread, returning a JoinHandle for it. Panics if the thread
* cannot be spawned.
*/
pub(crate) fn spawn_with_stack(_isotoken: avr_oxide::concurrency::interrupt::token::Isolated, code: Box<dyn FnOnce() -> u8>, stack: Box<dyn ThreadStack>) -> JoinHandle {
unsafe {
let scheduler = scheduler::instance();
for i in ThreadId::MIN..ThreadId::MAX {
match scheduler.threads[i] {
None => {
let stack_top = stack.get_stack_top();
let thread = ThreadContext {
state: ThreadState::Schedulable,
entrypoint: Some(code),
returncode: 0,
waiting_threads: ThreadSet::new(),
stack: Some(stack),
cpu_context: ProcessorContext {
sreg: BitField::with_bits_set(&[BitIndex::bit_c(7)]), // We enable interrupts in userland
gpregs: [0x00; 32],
pc: scheduler::thread_entrypoint as u16,
sp: stack_top as u16,
tid: i,
#[cfg(feature="extended_addressing")]
rampx: 0,
#[cfg(feature="extended_addressing")]
rampy: 0,
#[cfg(feature="extended_addressing")]
rampz: 0,
#[cfg(feature="extended_addressing")]
eind: 0
},
guard: 0xf0.into()
};
scheduler.threads[i] = Some(thread);
return JoinHandle {
thread: Thread {
thread_id: i,
}
};
},
Some(_) => {}
}
}
// If we got here, no free threads
avr_oxide::oserror::halt(avr_oxide::oserror::OsError::OutOfThreads);
}
}
impl JoinHandle {
/**
* Wait for the associated thread to complete execution.
*/
pub fn join(self) -> u8 {
unsafe {
loop {
let return_code = interrupt::isolated(|isotoken|{
let target_thread = scheduler::get_thread_by_id(self.thread.thread_id);
if target_thread.state == ThreadState::Zombie {
// Aha! The thread is ready to die...
scheduler::set_thread_state(isotoken, self.thread.thread_id, ThreadState::Dead);
Some(target_thread.returncode)
} else {
// OK, it's not dead yet. We need to wait for it
target_thread.waiting_threads.add_current_thread(isotoken);
scheduler::set_current_thread_state(isotoken, ThreadState::BlockedOnThread);
None
}
});
match return_code {
Some(value) => {
return value
},
None => {
yield_now();
}
}
}
}
}
/**
* Return a reference to the underlying thread object
*/
pub fn thread(&self) -> &Thread {
&self.thread
}
}
impl Thread {
/**
* Get the thread's unique identifier. Note that thread IDs are only
* unique as long as the thread is running, and may be recycled.
*/
pub fn id(&self) -> ThreadId {
self.thread_id
}
}
impl Builder {
pub fn new() -> Builder {
Builder {
stack_size: DEFAULT_THREAD_STACK_SIZE
}
}
pub fn stack_size(mut self, size: usize) -> Builder {
self.stack_size = size;
self
}
pub fn spawn<F>(self, f: F) -> JoinHandle
where
F: FnOnce() -> u8,
F: Send + 'static
{
interrupt::isolated(|isotoken|{
// First, let's clean up any dead threads
scheduler::reap_dead_threads(isotoken);
let stack = Box::new(DynamicThreadStack::new(self.stack_size));
let code = Box::new(f);
spawn_with_stack(isotoken, code, stack)
})
}
}
// Tests =====================================================================