1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
/* mutex.rs
*
* Developed by Tim Walls <tim.walls@snowgoons.com>
* Copyright (c) All Rights Reserved, Tim Walls
*/
// Imports ===================================================================
use core::cell::UnsafeCell;
use core::ops::{Deref, DerefMut};
use avr_oxide::concurrency::{interrupt, scheduler, TryLockError, TryLockResult};
use avr_oxide::concurrency::thread;
use avr_oxide::concurrency::util::{ThreadSet, ThreadId};
use avr_oxide::OxideResult;
use avr_oxide::OxideResult::{Ok,Err};
// Declarations ==============================================================
struct SimpleThreadMutex {
waiting_threads: ThreadSet,
locked_by: Option<ThreadId>
}
/// A mutual exclusion primitive useful for protecting shared data
///
/// This mutex will block threads waiting for the lock to become available. The
/// mutex can also be statically initialized or created via a [`new`]
/// constructor. Each mutex has a type parameter which represents the data that
/// it is protecting. The data can only be accessed through the RAII guards
/// returned from [`lock`] and [`try_lock`], which guarantees that the data is only
/// ever accessed when the mutex is locked.
///
/// [`new`]: Mutex::new
/// [`lock`]: Mutex::lock
/// [`try_lock`]: Mutex::try_lock
pub struct Mutex<T: ?Sized> {
lock: UnsafeCell<SimpleThreadMutex>,
// Because T is unsized, this needs to always be the last field in the struct
data: UnsafeCell<T>,
}
unsafe impl<T: ?Sized + Send> Send for Mutex<T> {}
unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {}
/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
/// dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// [`Deref`] and [`DerefMut`] implementations.
///
/// This structure is created by the [`lock`] and [`try_lock`] methods on
/// [`Mutex`].
///
/// [`lock`]: Mutex::lock
/// [`try_lock`]: Mutex::try_lock
#[must_use = "if unused the Mutex will immediately unlock"]
pub struct MutexGuard<'a, T: ?Sized + 'a> {
mutex: &'a Mutex<T>
}
impl<T: ?Sized> !Send for MutexGuard<'_, T> {}
unsafe impl<T: ?Sized + Sync> Sync for MutexGuard<'_, T> {}
// Code ======================================================================
impl SimpleThreadMutex {
fn unlocked() -> SimpleThreadMutex {
SimpleThreadMutex {
waiting_threads: ThreadSet::new(),
locked_by: None
}
}
fn try_lock(&mut self) -> OxideResult<(),TryLockError> {
interrupt::isolated(|isotoken|{
match self.locked_by {
None => {
self.locked_by.replace(scheduler::current_thread_id(isotoken));
Ok(())
},
Some(thread_id) => {
if thread_id == scheduler::current_thread_id(isotoken) {
// lolwut? I already have this lock. Odd. Probably shouldn't happen.
Ok(())
} else {
Err(TryLockError::WouldBlock)
}
}
}
})
}
fn lock(&mut self) {
loop {
// We will try spinning a few times to get the lock, if the lock is
// quickly going to be released then it's quicker than going down
// the road of context switches
for _i in 0..5 {
if self.try_lock().is_ok() {
return;
}
}
// OK, that didn't work, so we should go on the wait list
if interrupt::isolated(|isotoken|{
match self.locked_by {
// Still one last chance that we could acquire it now
None => {
self.locked_by.replace(scheduler::current_thread_id(isotoken));
true
},
Some(_other_thread_id) => {
// It's definitely another thread, 'cos if it was my thread
// the try_lock would have succeeded (and there's no way *my*
// thread could have acquired it between that try_lock and now
// unless something supernatural is happening)
self.waiting_threads.add_current_thread(isotoken);
scheduler::set_current_thread_state(isotoken, scheduler::ThreadState::BlockedOnMutex);
false
}
}
}) {
return
} else {
// OK, at this point everybody knows I am waiting - now I should yield
thread::yield_now();
}
// At this point, I'm running again. Maybe I can get the lock this
// time? Who knows... We'll go round the loop and find out though.
}
}
/// Release all threads that are waiting on this lock. Which one,
/// if any, will get the lock is up to luck and the scheduler.
fn unlock_and_release_waiting(&mut self) {
interrupt::isolated(|isotoken|{
self.locked_by.take();
scheduler::release_all_threads_and_clear(isotoken, &mut self.waiting_threads);
});
}
}
impl<T> Mutex<T> {
/// Creates a new mutex in an unlocked state ready for use.
///
pub fn new(t: T) -> Mutex<T> {
Mutex {
lock: UnsafeCell::new(SimpleThreadMutex::unlocked()),
data: UnsafeCell::new(t),
}
}
}
impl<T: ?Sized> Mutex<T> {
/// Acquires a mutex, blocking the current thread until it is able to do so.
///
/// This function will block the local thread until it is available to acquire
/// the mutex. Upon returning, the thread is the only thread with the lock
/// held. An RAII guard is returned to allow scoped unlock of the lock. When
/// the guard goes out of scope, the mutex will be unlocked.
///
/// The exact behavior on locking a mutex in the thread which already holds
/// the lock is left unspecified. However, this function will not return on
/// the second call (it might panic or deadlock, for example).
///
/// # Errors
///
/// If another user of this mutex panicked while holding the mutex, then
/// this call will return an error once the mutex is acquired.
///
/// # Panics
///
/// This function might panic when called if the lock is already held by
/// the current thread.
///
/// # Examples
///
/// ```
/// use std::sync::{Arc, Mutex};
/// use std::thread;
///
/// let mutex = Arc::new(Mutex::new(0));
/// let c_mutex = Arc::clone(&mutex);
///
/// thread::spawn(move || {
/// *c_mutex.lock().unwrap() = 10;
/// }).join().expect("thread::spawn failed");
/// assert_eq!(*mutex.lock().unwrap(), 10);
/// ```
pub fn lock(&self) -> MutexGuard<'_, T> {
unsafe {
let lock = &mut *self.lock.get();
lock.lock();
MutexGuard::new(self)
}
}
/// Attempts to acquire this lock.
///
/// If the lock could not be acquired at this time, then [`Err`] is returned.
/// Otherwise, an RAII guard is returned. The lock will be unlocked when the
/// guard is dropped.
///
/// This function does not block.
///
/// # Errors
///
/// If the mutex could not be acquired because it is already locked, then
/// this call will return the [`WouldBlock`] error.
///
/// [`WouldBlock`]: TryLockError::WouldBlock
///
/// # Examples
///
/// ```
/// use std::sync::{Arc, Mutex};
/// use std::thread;
///
/// let mutex = Arc::new(Mutex::new(0));
/// let c_mutex = Arc::clone(&mutex);
///
/// thread::spawn(move || {
/// let mut lock = c_mutex.try_lock();
/// if let Ok(ref mut mutex) = lock {
/// **mutex = 10;
/// } else {
/// println!("try_lock failed");
/// }
/// }).join().expect("thread::spawn failed");
/// assert_eq!(*mutex.lock().unwrap(), 10);
/// ```
pub fn try_lock(&self) -> TryLockResult<MutexGuard<'_, T>> {
unsafe {
let lock = &mut *self.lock.get();
match lock.try_lock(){
Ok(_) => {
Ok(MutexGuard::new(self))
},
Err(e) => {
Err(e)
}
}
}
}
/// Immediately drops the guard, and consequently unlocks the mutex.
///
/// This function is equivalent to calling [`drop`] on the guard but is more self-documenting.
/// Alternately, the guard will be automatically dropped when it goes out of scope.
///
pub fn unlock(guard: MutexGuard<'_, T>) {
drop(guard);
}
/// Consumes this mutex, returning the underlying data.
///
/// # Errors
///
/// If another user of this mutex panicked while holding the mutex, then
/// this call will return an error instead.
///
/// # Examples
///
/// ```
/// use std::sync::Mutex;
///
/// let mutex = Mutex::new(0);
/// assert_eq!(mutex.into_inner().unwrap(), 0);
/// ```
pub fn into_inner(self) -> T
where
T: Sized
{
self.data.into_inner()
}
/// Returns a mutable reference to the underlying data.
///
/// Since this call borrows the `Mutex` mutably, no actual locking needs to
/// take place -- the mutable borrow statically guarantees no locks exist.
///
/// # Errors
///
/// If another user of this mutex panicked while holding the mutex, then
/// this call will return an error instead.
///
/// # Examples
///
/// ```
/// use std::sync::Mutex;
///
/// let mut mutex = Mutex::new(0);
/// *mutex.get_mut().unwrap() = 10;
/// assert_eq!(*mutex.lock().unwrap(), 10);
/// ```
pub fn get_mut(&mut self) -> &mut T {
self.data.get_mut()
}
}
impl<T> From<T> for Mutex<T> {
/// Creates a new mutex in an unlocked state ready for use.
/// This is equivalent to [`Mutex::new`].
fn from(t: T) -> Self {
Mutex::new(t)
}
}
impl<T: ?Sized + Default> Default for Mutex<T> {
/// Creates a `Mutex<T>`, with the `Default` value for T.
fn default() -> Mutex<T> {
Mutex::new(Default::default())
}
}
impl<'mutex, T: ?Sized> MutexGuard<'mutex, T> {
unsafe fn new(lock: &'mutex Mutex<T>) -> MutexGuard<'mutex, T> {
MutexGuard { mutex: lock }
}
}
impl<T: ?Sized> Deref for MutexGuard<'_, T> {
type Target = T;
fn deref(&self) -> &T {
unsafe { &*self.mutex.data.get() }
}
}
impl<T: ?Sized> DerefMut for MutexGuard<'_, T> {
fn deref_mut(&mut self) -> &mut T {
unsafe { &mut *self.mutex.data.get() }
}
}
impl<T: ?Sized> Drop for MutexGuard<'_, T> {
#[inline]
fn drop(&mut self) {
unsafe {
(&mut *self.mutex.lock.get()).unlock_and_release_waiting();
}
}
}
// Tests =====================================================================