1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
/* scheduler.rs
*
* Developed by Tim Walls <tim.walls@snowgoons.com>
* Copyright (c) All Rights Reserved, Tim Walls
*/
//! The AVRoxide scheduler implementation
use core::mem::MaybeUninit;
// Imports ===================================================================
use avr_oxide::{cpu, OxideResult, thread};
use avr_oxide::deviceconsts::oxide::MAX_THREADS;
use avr_oxide::hal::generic::cpu::{ContextSaveRestore, Cpu};
use avr_oxide::util::datatypes::Volatile;
use avr_oxide::alloc::boxed::Box;
use avr_oxide::hal::generic::cpu::ProcessorContext;
use avr_oxide::concurrency::{interrupt, stack};
use avr_oxide::concurrency::util::{ThreadId, ThreadSet};
use avr_oxide::concurrency::stack::ThreadStack;
use avr_oxide::oserror::OsError;
use avr_oxide::OxideResult::{Ok,Err};
// Declarations ==============================================================
const IDLE_THREAD_STACK_SIZE: usize = 48;
/**
* The current state of scheduled/running threads.
*/
pub(super) struct SchedulerState<const MT: usize> {
pub(super) threads: [Option<ThreadContext>; MT],
}
static mut SCHEDULER: MaybeUninit<SchedulerState<MAX_THREADS>> = MaybeUninit::uninit();
// Address of the next thread context structure to context switch to;
// this is exported from our assembly language routines
#[cfg(target_arch="avr")]
extern {
static mut __NEXT_THREAD_CONTEXT : Volatile<usize>;
}
#[cfg(not(target_arch="avr"))]
static mut __NEXT_THREAD_CONTEXT : Volatile<usize> = Volatile::<usize>::zero();
/**
* All the context we store with a thread.
*/
#[repr(C)]
pub struct ThreadContext {
// WARNING WARNING WARNING WARNING (YES, this is a hack)
//
// We put the cpu_context as the first thing in our struct, and also
// insist on `repr(C)`.
//
// Why? Because then the address of the ProcessorContext and the address
// of the ThreadContext are the same thing. This allows for some
// optimisation when doing things like GetCurrentThread(), because
// we can just use our global processor context register to get at the
// thread.
//
// It also makes debugging easier to only have one number to follow for
// either.
//
// Yes, I am a bad person.
pub(crate) cpu_context: ProcessorContext,
// WARNING WARNING WARNING WARNING ========================================
pub(crate) guard: Volatile<u8>,
pub(crate) state: ThreadState,
pub(crate) stack: Option<Box<dyn ThreadStack>>,
pub(crate) entrypoint: Option<Box<dyn FnOnce()->u8>>,
pub(crate) returncode: u8,
pub(crate) waiting_threads: ThreadSet
}
/**
* The state that a thread can be in
*/
#[derive(PartialEq,Copy,Clone)]
pub enum ThreadState {
/// This thread can be scheduled for execution
Schedulable,
/// This thread can be scheduled for execution, but it is a background
/// thread that should only be run if nothing else is available.
BackgroundSchedulable,
/// This thread is suspended and cannot (currently) be executed until
/// its state is changed to Schedulable
Suspended,
/// This thread has completed execution, but nobody has joined it
/// and consumed the return value, so we can't replace it yet
Zombie,
/// This thread has been killed and may be replaced.
Dead,
/// This thread is waiting for a mutex
BlockedOnMutex,
/// This thread is waiting to join another thread
BlockedOnThread,
/// This thread is waiting for a queue to produce or consume data
BlockedOnQueue,
/// This thread is waiting for an EventWait to release it
BlockedOnEvent,
}
// Code ======================================================================
/**
* Get a reference to the scheduler instance.
*
* # SAFETY
* It's up to the caller to ensure that the scheduler was actually initialised
* before calling this.
*/
pub(super) unsafe fn instance() -> &'static mut SchedulerState<MAX_THREADS> {
SCHEDULER.assume_init_mut()
}
/**
* The idle thread. This literally just exists to soak up CPU cycles when
* nothing else can be scheduled. (Actually, rather than soak them up, it
* will try to `sleep` as much as possible.)
*/
fn idle_thread() -> u8 {
interrupt::isolated(|isotoken|{
set_current_thread_state(isotoken, ThreadState::BackgroundSchedulable);
});
loop {
unsafe {
thread::yield_now();
// Only sleep waiting for an interrupt if we're reasonably sure
// interrupts that might wake us up are happening :-).
core::arch::asm!(
" sbic {context_flags_reg},{flag_preemption}",
" sleep",
" cbi {context_flags_reg},{flag_preemption}",
context_flags_reg = const(avr_oxide::hardware::cpu::cpuregs::IOADR_CONTEXT_FLAGS),
flag_preemption = const(avr_oxide::hal::generic::cpu::CONTEXT_FLAG_PREEMPTION),
);
}
}
}
impl ThreadState {
/// Modify the thread state. This method includes 'business rules' that
/// ensure only sane changes of state are permitted (e.g. a Dead or Zombie
/// thread can't go to Schedulable)
fn change(&mut self, new_state: ThreadState) {
// Why do we write this in such an ugly way? Because of code generation
// errors from LLVM/AVR when we use the more obvious 'match' based
// approach.
//
// Sigh.
// Check not trying to block from within an ISR
#[cfg(feature="runtime_checks")]
if cpu!().in_isr() {
if new_state == Self::BlockedOnMutex {
avr_oxide::oserror::halt(OsError::BadThreadState);
}
if new_state == Self::BlockedOnQueue {
avr_oxide::oserror::halt(OsError::BadThreadState);
}
if new_state == Self::BlockedOnEvent {
avr_oxide::oserror::halt(OsError::BadThreadState);
}
if new_state == Self::BlockedOnThread {
avr_oxide::oserror::halt(OsError::BadThreadState);
}
}
// Check background thread not trying to die or block
#[cfg(feature="runtime_checks")]
if *self == Self::BackgroundSchedulable {
avr_oxide::oserror::halt(OsError::BadThreadState);
}
*self = new_state;
}
/// This thread can be reaped
fn can_be_reaped(&self) -> bool {
*self == Self::Dead
}
pub(crate) fn to_debug_str(&self) -> &str {
match self {
ThreadState::Schedulable => "RDY",
ThreadState::BackgroundSchedulable => "bgd",
ThreadState::Suspended => "Sus",
ThreadState::Zombie => "Zby",
ThreadState::Dead => "XXX",
ThreadState::BlockedOnMutex => "B:M",
ThreadState::BlockedOnThread => "B:T",
ThreadState::BlockedOnQueue => "B:Q",
ThreadState::BlockedOnEvent => "B:E",
}
}
}
/**
* Initialise the concurrency system. Must be called once and only once,
* and before interrupts have been enabled.
*/
pub(crate) fn initialise() {
unsafe {
const NOTHREAD: Option<ThreadContext> = None;
core::ptr::write(SCHEDULER.as_mut_ptr(),
SchedulerState {
threads: [NOTHREAD; MAX_THREADS],
});
stack::kernel::initialise();
}
thread::Builder::new().stack_size(IDLE_THREAD_STACK_SIZE).spawn(idle_thread);
}
pub(crate) unsafe fn get_current_thread(isotoken: interrupt::token::Isolated) -> &'static mut ThreadContext {
core::mem::transmute(cpu!().get_processor_context(isotoken))
}
pub(crate) unsafe fn get_thread_by_id(thread_id: ThreadId) -> &'static mut ThreadContext {
let scheduler = SCHEDULER.assume_init_mut();
match &mut scheduler.threads[thread_id] {
None => {
avr_oxide::oserror::halt(avr_oxide::oserror::OsError::InternalError);
},
Some(thread) => {
thread
}
}
}
pub(crate) unsafe fn try_get_thread_by_id(thread_id: ThreadId) -> &'static mut Option<ThreadContext> {
let scheduler = SCHEDULER.assume_init_mut();
&mut scheduler.threads[thread_id]
}
pub fn current_thread_id(isotoken: interrupt::token::Isolated) -> ThreadId {
unsafe {
cpu!().get_processor_context(isotoken).tid
}
}
pub(crate) fn set_current_thread_state(isotoken: interrupt::token::Isolated, new_state: ThreadState) {
unsafe {
get_current_thread(isotoken).state.change(new_state);
}
}
pub(crate) fn try_set_thread_state(_isotoken: interrupt::token::Isolated, thread_id: ThreadId, new_state: ThreadState) -> OxideResult<(),OsError> {
unsafe {
match try_get_thread_by_id(thread_id) {
Some(thread) => {
thread.state.change(new_state);
Ok(())
},
None => {
Err(OsError::NoSchedulableThreads)
}
}
}
}
pub(crate) fn set_thread_state(_isotoken: interrupt::token::Isolated, thread_id: ThreadId, new_state: ThreadState) {
unsafe {
get_thread_by_id(thread_id).state.change(new_state);
}
}
pub(crate) fn release_all_threads_and_clear(isotoken: interrupt::token::Isolated, threads: &mut ThreadSet) {
threads.do_each_consuming(isotoken, |isotoken, thread_id|{
let _ = try_set_thread_state(isotoken, thread_id, ThreadState::Schedulable);
true
});
}
impl ThreadContext {
pub(crate) fn halt_if_invalid(&self) {
if self.guard.read() != 0xf0 {
avr_oxide::oserror::halt(OsError::KernelGuardCrashed);
}
}
}
/**
* This is how we actually start a thread; we need to enable interrupts
* before calling the thread function itself; after the thread completes,
* we also need to collect the return value and update the thread status.
*/
pub(super) unsafe extern "C" fn thread_entrypoint() -> () {
// When I arrive here, it's after falling out of a "restore_thread_context".
// I need to do a little prep-work here to make sure all is well - execute
// a `reti` instruction etc. to get the interrupt system back in play
#[cfg(target_arch="avr")]
core::arch::asm!(
" sbic {context_flags_reg},{flag_enableints}", // tells us to enable interrupts
" sei",
" sbic {context_flags_reg},{flag_reti}", // tells us we need to execute a reti to
// let the '4809 we exited an ISR
" call 1f",
" jmp 2f",
"1:", "reti",
"2:", "nop",
context_flags_reg = const(avr_oxide::hardware::cpu::cpuregs::IOADR_CONTEXT_FLAGS),
flag_enableints = const(avr_oxide::hal::generic::cpu::CONTEXT_FLAG_ENABLEINTS),
flag_reti = const(avr_oxide::hal::generic::cpu::CONTEXT_FLAG_RETI)
);
let thread = avr_oxide::concurrency::interrupt::isolated(|isotoken|{
get_current_thread(isotoken)
});
let code = thread.entrypoint.take().unwrap();
let res = (code)();
avr_oxide::concurrency::interrupt::isolated(|isotoken|{
thread.returncode = res;
thread.state.change(ThreadState::Zombie);
// Dispose of the stack
core::mem::drop(thread.stack.take());
// Note that this is a little risky, in that I'm actually sitting on
// this very stack as I speak. But, it's OK because for anything to
// corrupt the stack (which is on the heap) it would need to alloc(),
// and since alloc() only happens in userland, it can't happen until
// threads have been switched - by which time, I don't care about this
// stack any more.
// Wake up all the threads that are waiting on this thread
// (There should only be one of course :-).)
release_all_threads_and_clear(isotoken, &mut thread.waiting_threads);
});
userland_schedule_and_switch();
}
/// Check all threads are valid, and halt if not
#[inline(never)] // Workaround for LLVM bugs
unsafe fn check_all_threads_valid() {
// Check all threads are valid (this is a sanity/safety check)
for i in 0..MAX_THREADS {
if let Some(thread) = &instance().threads[i] {
thread.halt_if_invalid();
// Also check the stack wasn't crashed
match &thread.stack {
Some(stack) => {
stack.halt_if_stack_crashed();
},
None => {}
}
}
}
}
/**
* Schedule the next thread for execution. That simply means setting the
* processor context flag to point at the next schedulable thread. The
* thread will begin execution when `restore_thread_context` is called
* (typically on the return from whatever interrupt service routine we're
* in).
*/
pub(crate) fn schedule_next_thread(isotoken: avr_oxide::concurrency::interrupt::token::Isolated) {
unsafe {
#[cfg(feature="runtime_checks")]
check_all_threads_valid();
let mut candidate = current_thread_id(isotoken);
// Look for a 'regular' priority thread to schedule
for _i in 0..MAX_THREADS {
candidate = (candidate + 1) % MAX_THREADS;
if let Some(thread_context) = &mut instance().threads[candidate] {
if thread_context.state == ThreadState::Schedulable {
// We found a schedulable thread - yay
__NEXT_THREAD_CONTEXT.write_isolated(isotoken, &mut thread_context.cpu_context as *mut ProcessorContext as usize);
return;
}
}
}
// OK, none of our regular priority threads was schedulable. Let's try
// again looking for a background thread.
for _i in 0..MAX_THREADS {
candidate = (candidate + 1) % MAX_THREADS;
if let Some(thread_context) = &mut instance().threads[candidate] {
if thread_context.state == ThreadState::BackgroundSchedulable {
// We found a schedulable thread - yay
__NEXT_THREAD_CONTEXT.write_isolated(isotoken, &mut thread_context.cpu_context as *mut ProcessorContext as usize);
return;
}
}
}
// If I got this far, nothing was schedulable. This ought to be impossible
// (we should always have an Idle thread at least.)
avr_oxide::oserror::halt(avr_oxide::oserror::OsError::NoSchedulableThreads);
}
}
/**
* Clean up any old, dead threads, freeing up the memory allocated to their
* thread context/stack.
*/
pub(crate) fn reap_dead_threads(_isotoken: interrupt::token::Isolated) {
unsafe {
let scheduler = SCHEDULER.assume_init_mut();
for i in 0..MAX_THREADS {
match &scheduler.threads[i] {
None => {},
Some(thread) => {
if thread.state.can_be_reaped() {
// `DON'T THINK OF IT AS DYING`
let farewell = scheduler.threads[i].take();
// `THINK OF IT AS LEAVING EARLY TO AVOID THE RUSH`
core::mem::drop(farewell);
}
}
}
}
}
}
/**
* Save and switch contexts called from userland (rather than an ISR.)
*/
pub(crate) unsafe extern "C" fn userland_schedule_and_switch() {
interrupt::isolated(|isotoken|{
schedule_next_thread(isotoken);
#[cfg(target_arch="avr")]
core::arch::asm!(
" call save_thread_context",
" sbic {context_flags_reg},{flag_restored}",
" jmp 1f",
" jmp restore_thread_context",
"1:", // At this point I've been restored. It's possible I'm actually in
// an ISR now, so I use the context flags to tell me how to
// get back to userland
" sbic {context_flags_reg},{flag_enableints}", // Tells us to enable ints
" sei",
" sbic {context_flags_reg},{flag_reti}", // Tells us to reti
" call 1f",
" jmp 2f",
"1:","reti",
"2:","nop",
context_flags_reg = const(avr_oxide::hardware::cpu::cpuregs::IOADR_CONTEXT_FLAGS),
flag_enableints = const(avr_oxide::hal::generic::cpu::CONTEXT_FLAG_ENABLEINTS),
flag_reti = const(avr_oxide::hal::generic::cpu::CONTEXT_FLAG_RETI),
flag_restored = const(avr_oxide::hal::generic::cpu::CONTEXT_FLAG_RESTORED),
options(preserves_flags)
);
});
}
/**
* Call me only once ;). I trigger the first thread execution; I do this
* by loading its context and then returning from interrupt. (No, I know
* I'm not in an interrupt - but this has the effect I want, which is to
* enable interrupts once the new thread begins executing.)
*
* The restore_thread_context function puts the thread's PC on the stack,
* so the reti will return to begin execution from the beginning of the
* thread.
*/
pub(crate) unsafe fn restore_first_thread() -> ! {
// Thread 0 should always exist - it's the idle thread I created in
// the initialise() method
if let Some(thread_context) = &mut instance().threads[0] {
__NEXT_THREAD_CONTEXT.write(&mut thread_context.cpu_context as *mut ProcessorContext as usize);
#[cfg(target_arch="avr")]
core::arch::asm!(
" jmp restore_thread_context",
// This function will 'return' to the beginning of our thread
options(noreturn));
#[cfg(not(target_arch="avr"))]
core::arch::asm!("nop",options(noreturn));
} else {
avr_oxide::oserror::halt(avr_oxide::oserror::OsError::NoSchedulableThreads);
}
}
// Tests =====================================================================